How to Read Column in Csv C++
read_csv()
and read_tsv()
are special cases of the more general read_delim()
. They're useful for reading the virtually common types of flat file data, comma separated values and tab separated values, respectively. read_csv2()
uses ;
for the field separator and ,
for the decimal point. This format is common in some European countries.
Usage
read_delim ( file, delim = NULL, quote = "\"", escape_backslash = FALSE, escape_double = True, col_names = True, col_types = NULL, col_select = NULL, id = NULL, locale = default_locale ( ), na = c ( "", "NA" ), quoted_na = True, comment = "", trim_ws = Fake, skip = 0, n_max = Inf, guess_max = min ( yard, n_max ), name_repair = "unique", num_threads = readr_threads ( ), progress = show_progress ( ), show_col_types = should_show_types ( ), skip_empty_rows = Truthful, lazy = should_read_lazy ( ) ) read_csv ( file, col_names = TRUE, col_types = NULL, col_select = Nada, id = Zippo, locale = default_locale ( ), na = c ( "", "NA" ), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = Truthful, skip = 0, n_max = Inf, guess_max = min ( 1000, n_max ), name_repair = "unique", num_threads = readr_threads ( ), progress = show_progress ( ), show_col_types = should_show_types ( ), skip_empty_rows = True, lazy = should_read_lazy ( ) ) read_csv2 ( file, col_names = True, col_types = Nix, col_select = Nothing, id = Nothing, locale = default_locale ( ), na = c ( "", "NA" ), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min ( thou, n_max ), progress = show_progress ( ), name_repair = "unique", num_threads = readr_threads ( ), show_col_types = should_show_types ( ), skip_empty_rows = Truthful, lazy = should_read_lazy ( ) ) read_tsv ( file, col_names = TRUE, col_types = NULL, col_select = Zero, id = Nothing, locale = default_locale ( ), na = c ( "", "NA" ), quoted_na = True, quote = "\"", comment = "", trim_ws = True, skip = 0, n_max = Inf, guess_max = min ( grand, n_max ), progress = show_progress ( ), name_repair = "unique", num_threads = readr_threads ( ), show_col_types = should_show_types ( ), skip_empty_rows = TRUE, lazy = should_read_lazy ( ) )
Arguments
- file
-
Either a path to a file, a connexion, or literal data (either a single cord or a raw vector).
Files ending in
.gz
,.bz2
,.xz
, or.nothing
will be automatically uncompressed. Files starting withhttp://
,https://
,ftp://
, orftps://
will exist automatically downloaded. Remote gz files can besides be automatically downloaded and decompressed.Literal data is virtually useful for examples and tests. To be recognised as literal data, the input must exist either wrapped with
I()
, exist a string containing at to the lowest degree i new line, or exist a vector containing at least one string with a new line.Using a value of
clipboard()
will read from the system clipboard. - delim
-
Single character used to split up fields inside a tape.
- quote
-
Unmarried character used to quote strings.
- escape_backslash
-
Does the file use backslashes to escape special characters? This is more full general than
escape_double
equally backslashes can be used to escape the delimiter character, the quote grapheme, or to add special characters like\\northward
. - escape_double
-
Does the file escape quotes by doubling them? i.e. If this option is
Truthful
, the value""""
represents a single quote,\"
. - col_names
-
Either
TRUE
,Faux
or a grapheme vector of column names.If
TRUE
, the first row of the input volition exist used as the cavalcade names, and volition not exist included in the data frame. IfImitation
, cavalcade names will be generated automatically: X1, X2, X3 etc.If
col_names
is a character vector, the values will exist used as the names of the columns, and the starting time row of the input will exist read into the first row of the output data frame.Missing (
NA
) column names volition generate a warning, and exist filled in with dummy names...1
,...2
etc. Duplicate column names will generate a alert and be made unique, seename_repair
to control how this is done. - col_types
-
One of
Cipher
, acols()
specification, or a cord. Seevignette("readr")
for more details.If
NULL
, all column types will be imputed fromguess_max
rows on the input interspersed throughout the file. This is convenient (and fast), but not robust. If the imputation fails, you lot'll need to increase theguess_max
or supply the correct types yourself.Cavalcade specifications created past
list()
orcols()
must contain one column specification for each column. If you lot only desire to read a subset of the columns, applycols_only()
.Alternatively, you tin can apply a compact string representation where each character represents one column:
-
c = graphic symbol
-
i = integer
-
n = number
-
d = double
-
l = logical
-
f = cistron
-
D = date
-
T = date time
-
t = time
-
? = guess
-
_ or - = skip
Past default, reading a file without a column specification will impress a message showing what
readr
guessed they were. To remove this message, setshow_col_types = FALSE
or prepare `options(readr.show_col_types = FALSE).
-
- col_select
-
Columns to include in the results. You can apply the aforementioned mini-language as
dplyr::select()
to refer to the columns by name. Utilizec()
orlist()
to apply more than one selection expression. Although this usage is less common,col_select
as well accepts a numeric column index. See?tidyselect::linguistic communication
for total details on the option linguistic communication. - id
-
The name of a column in which to store the file path. This is useful when reading multiple input files and there is information in the file paths, such as the data drove engagement. If
Goose egg
(the default) no extra column is created. - locale
-
The locale controls defaults that vary from place to place. The default locale is United states of america-centric (similar R), but you tin can apply
locale()
to create your ain locale that controls things similar the default time zone, encoding, decimal marker, big mark, and solar day/month names. - na
-
Character vector of strings to translate as missing values. Set this selection to
graphic symbol()
to indicate no missing values. - quoted_na
-
Should missing values within quotes be treated as missing values (the default) or strings. This parameter is soft deprecated every bit of readr 2.0.0.
- comment
-
A string used to identify comments. Whatever text after the comment characters volition be silently ignored.
- trim_ws
-
Should leading and abaft whitespace (ASCII spaces and tabs) be trimmed from each field earlier parsing information technology?
- skip
-
Number of lines to skip before reading data. If
annotate
is supplied whatever commented lines are ignored after skipping. - n_max
-
Maximum number of lines to read.
- guess_max
-
Maximum number of lines to utilize for guessing column types. See
vignette("column-types", package = "readr")
for more details. - name_repair
-
Handling of column names. The default behaviour is to ensure column names are
"unique"
. Various repair strategies are supported:-
"minimal"
: No name repair or checks, beyond basic existence of names. -
"unique"
(default value): Make sure names are unique and not empty. -
"check_unique"
: no name repair, only cheque they areunique
. -
"universal"
: Make the namesunique
and syntactic. -
A office: apply custom name repair (e.g.,
name_repair = make.names
for names in the style of base R). -
A purrr-style anonymous role, run into
rlang::as_function()
.
This statement is passed on equally
repair
tovctrs::vec_as_names()
. See there for more than details on these terms and the strategies used to enforce them. -
- num_threads
-
The number of processing threads to use for initial parsing and lazy reading of data. If your data contains newlines within fields the parser should automatically detect this and fall back to using one thread only. However if you know your file has newlines within quoted fields it is safest to set
num_threads = i
explicitly. - progress
-
Brandish a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar tin be disabled by setting option
readr.show_progress
toFake
. - show_col_types
-
If
Imitation
, exercise not show the guessed column types. IfTRUE
always prove the column types, even if they are supplied. IfNULL
(the default) merely testify the cavalcade types if they are not explicitly supplied by thecol_types
argument. - skip_empty_rows
-
Should blank rows be ignored altogether? i.e. If this pick is
Truthful
then blank rows will not exist represented at all. If it isFALSE
then they will be represented byNA
values in all the columns. - lazy
-
Read values lazily? By default the file is initially only indexed and the values are read lazily when accessed. Lazy reading is useful interactively, especially if yous are only interested in a subset of the full dataset. Note, if you later on write to the same file you read from y'all need to set up
lazy = FALSE
. On Windows the file will be locked and on other systems the memory map will become invalid.
Value
A tibble()
. If there are parsing bug, a warning will alarm you lot. You tin retrieve the full details past calling problems()
on your dataset.
Examples
# Input sources ------------------------------------------------------------- # Read from a path read_csv ( readr_example ( "mtcars.csv" ) ) #> Rows: 32 Columns: xi #> ── Cavalcade specification ────────────────────────────────────────────────── #> Delimiter: "," #> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb #> #> ℹ Use `spec()` to recollect the total cavalcade specification for this data. #> ℹ Specify the column types or set `show_col_types = False` to quiet this bulletin. #> # A tibble: 32 × eleven #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> ane 21 6 160 110 3.9 2.62 sixteen.5 0 1 iv 4 #> 2 21 vi 160 110 3.9 2.88 17.0 0 ane 4 four #> 3 22.8 four 108 93 3.85 2.32 18.6 1 one 4 1 #> 4 21.four 6 258 110 3.08 3.22 19.4 i 0 3 1 #> 5 18.vii viii 360 175 3.xv 3.44 17.0 0 0 3 2 #> 6 eighteen.1 vi 225 105 2.76 3.46 20.2 1 0 3 1 #> 7 xiv.iii 8 360 245 3.21 3.57 15.8 0 0 three 4 #> eight 24.4 4 147. 62 3.69 three.19 20 1 0 4 2 #> ix 22.8 4 141. 95 3.92 iii.15 22.9 1 0 4 two #> x nineteen.2 6 168. 123 iii.92 three.44 xviii.iii 1 0 4 four #> # … with 22 more than rows read_csv ( readr_example ( "mtcars.csv.zip" ) ) #> Rows: 32 Columns: 11 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "," #> dbl (eleven): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb #> #> ℹ Utilise `spec()` to remember the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = Faux` to serenity this bulletin. #> # A tibble: 32 × xi #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 half dozen 160 110 3.9 2.62 xvi.5 0 i 4 4 #> 2 21 6 160 110 3.9 2.88 17.0 0 one 4 4 #> 3 22.viii 4 108 93 3.85 2.32 xviii.half-dozen one 1 4 1 #> 4 21.4 6 258 110 3.08 3.22 19.four ane 0 3 ane #> 5 18.vii 8 360 175 3.xv three.44 17.0 0 0 3 two #> vi eighteen.1 six 225 105 2.76 3.46 20.2 ane 0 3 1 #> 7 fourteen.3 viii 360 245 3.21 iii.57 15.8 0 0 3 4 #> 8 24.iv iv 147. 62 3.69 3.19 20 one 0 iv ii #> ix 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 #> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 iv 4 #> # … with 22 more rows read_csv ( readr_example ( "mtcars.csv.bz2" ) ) #> Rows: 32 Columns: 11 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "," #> dbl (eleven): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb #> #> ℹ Utilise `spec()` to remember the full cavalcade specification for this data. #> ℹ Specify the cavalcade types or set `show_col_types = FALSE` to quiet this message. #> # A tibble: 32 × 11 #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> ane 21 6 160 110 3.9 2.62 sixteen.five 0 1 4 4 #> 2 21 vi 160 110 3.9 2.88 17.0 0 ane four 4 #> iii 22.eight 4 108 93 3.85 ii.32 18.half-dozen 1 1 4 1 #> iv 21.4 half dozen 258 110 iii.08 3.22 19.iv 1 0 3 one #> five 18.seven 8 360 175 iii.15 3.44 17.0 0 0 3 two #> 6 18.i 6 225 105 2.76 iii.46 xx.two 1 0 3 one #> 7 xiv.3 eight 360 245 3.21 3.57 15.viii 0 0 3 4 #> 8 24.4 4 147. 62 3.69 3.19 xx i 0 4 2 #> 9 22.8 4 141. 95 3.92 3.xv 22.9 1 0 4 2 #> 10 nineteen.two 6 168. 123 3.92 3.44 18.three 1 0 4 4 #> # … with 22 more rows if ( Faux ) { # Including remote paths read_csv ( "https://github.com/tidyverse/readr/raw/primary/inst/extdata/mtcars.csv" ) } # Or directly from a string with `I()` read_csv ( I ( "10,y\n1,ii\n3,iv" ) ) #> Rows: 2 Columns: 2 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "," #> dbl (2): x, y #> #> ℹ Use `spec()` to call up the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this bulletin. #> # A tibble: ii × ii #> x y #> <dbl> <dbl> #> i one 2 #> 2 3 four # Column types -------------------------------------------------------------- # Past default, readr guesses the columns types, looking at `guess_max` rows. # You lot tin override with a meaty specification: read_csv ( I ( "x,y\n1,2\n3,4" ), col_types = "dc" ) #> # A tibble: 2 × 2 #> 10 y #> <dbl> <chr> #> one i 2 #> 2 3 4 # Or with a list of column types: read_csv ( I ( "x,y\n1,2\n3,4" ), col_types = listing ( col_double ( ), col_character ( ) ) ) #> # A tibble: ii × 2 #> x y #> <dbl> <chr> #> 1 1 ii #> 2 3 4 # If there are parsing problems, yous go a warning, and can extract # more details with problems() y <- read_csv ( I ( "x\n1\n2\nb" ), col_types = list ( col_double ( ) ) ) #> Warning: One or more parsing problems, see `bug()` for details y #> # A tibble: 3 × 1 #> ten #> <dbl> #> 1 one #> ii 2 #> 3 NA issues ( y ) #> # A tibble: 1 × 5 #> row col expected actual file #> <int> <int> <chr> <chr> <chr> #> 1 4 1 a double b /tmp/RtmpHUcdNA/file272e3ec33855 # File types ---------------------------------------------------------------- read_csv ( I ( "a,b\n1.0,two.0" ) ) #> Rows: ane Columns: 2 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "," #> dbl (2): a, b #> #> ℹ Apply `spec()` to think the total cavalcade specification for this data. #> ℹ Specify the cavalcade types or prepare `show_col_types = Faux` to quiet this message. #> # A tibble: 1 × 2 #> a b #> <dbl> <dbl> #> i i 2 read_csv2 ( I ( "a;b\n1,0;2,0" ) ) #> ℹ Using "','" as decimal and "'.'" every bit group mark. Use `read_delim()` for more command. #> Rows: one Columns: 2 #> ── Cavalcade specification ────────────────────────────────────────────────── #> Delimiter: ";" #> dbl (ii): a, b #> #> ℹ Use `spec()` to retrieve the full cavalcade specification for this information. #> ℹ Specify the column types or fix `show_col_types = FALSE` to placidity this message. #> # A tibble: 1 × 2 #> a b #> <dbl> <dbl> #> one 1 2 read_tsv ( I ( "a\tb\n1.0\t2.0" ) ) #> Rows: 1 Columns: 2 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "\t" #> dbl (2): a, b #> #> ℹ Use `spec()` to remember the total column specification for this data. #> ℹ Specify the column types or set `show_col_types = Imitation` to quiet this bulletin. #> # A tibble: i × 2 #> a b #> <dbl> <dbl> #> 1 1 2 read_delim ( I ( "a|b\n1.0|two.0" ), delim = "|" ) #> Rows: 1 Columns: 2 #> ── Column specification ────────────────────────────────────────────────── #> Delimiter: "|" #> dbl (2): a, b #> #> ℹ Utilise `spec()` to retrieve the full column specification for this information. #> ℹ Specify the column types or fix `show_col_types = Simulated` to serenity this message. #> # A tibble: one × 2 #> a b #> <dbl> <dbl> #> 1 1 2
brownellsealithed.blogspot.com
Source: https://readr.tidyverse.org/reference/read_delim.html
Belum ada Komentar untuk "How to Read Column in Csv C++"
Posting Komentar